74.1 F
Waurika
Thursday, May 2, 2024
Advertisement

Armyworm Control Measures . . .

Well, we are deep into a Fall armyworm infestation that may be 3-4 times, or more, worse than I have ever seen. Established control thresholds are 2-3 caterpillars per foot of row in newly emergent small grains and 3-4 caterpillars in established pastures, such as Bermuda or small grains fields. I am seeing 15-20 caterpillars per square foot in many places! Many of you have already sprayed, but do not rest easy thinking this is the last you will have to worry about them.

Depending on when we get our first frost, there could be one or two more generations of these pests before Mother Nature provides some relief. Our average first frost is November 10, and given how the law of averages works it could be two weeks earlier or two weeks later in a given year. One complete life cycle of the Fall armyworm takes 2-3 weeks, about 10-14 days as feeding caterpillar, 8-9 days in the pupal stage, and 1-3 days as egg-laying adult moths. Once new eggs are lain, new caterpillars hatch about 3 days later to begin the feeding cycle again. So, if our first frost occurs near the November 10th average date, we could see at least one and possibly two more cycles. If we have a late frost, we could see three more generations.

 The decision to spray should be based on the cost of control versus the value of the forage in question. If the loss of the forage means a substantially increased reliance on feed and hay this winter or replanting small grains fields, then control is likely an economically feasible option. Beyond that, the choice of a control product labeled for Fall armyworm control is largely driven by the cost of application and availability. 

There are a multitude of products commercially available for the control of Fall armyworms and, unfortunately, most of them will only have a 2 or 3-day window of residual activity. Many of the products have no grazing or haying restrictions, but some will have a 3 to 14-day grazing or haying restriction.

The salient point is that I would advise scouting fields at least every other day until we get a frost, and maybe invest in a HUGE flock of chickens (weak attempt at humor). 

If you have questions regarding control strategies for Fall armyworms, feel free to contact me via phone (Carter County OSU Extension 580/223-6570; Jefferson County OSU Extension 580/228-2332) or email: Leland.mcdaniel@okstate.edu.

Spring vs. Fall Calving Seasons; or Both?

The debate over spring-calving or fall-calving seasons is a common topic in Oklahoma, and Southern Plains producers have alternatives for calving seasons that producers in more northern climes do not. Spring and fall are the seasons of choice.  Traditionally many herds have been bred to calve in February and March, to take advantage of summer forage greenup when the lactating cows and new calf crop most need high quality forage. Some fall calving seasons have arisen from elongated spring seasons or were initiated by “rolling over” females that failed to become pregnant in the spring breeding season.  Most fall-calving herds were created by design to take advantage of improved cow condition at calving, improved market conditions when calves and cull cows are sold, and less weather (heat) stress on cows and bulls during the breeding season. Due to our mild winters and ability to winter nursing cows reasonably efficiently, south-central Oklahoma is ideally situated to take advantage of a fall-calving system, and historical market trends make it appealing. However, it does not have to be an “either, or” scenario. Having two calving seasons spreads cash flow through the year and offers flexibility to respond to market signals or, in other words, allows producers options to avoid “putting all their eggs in one basket.”

Deciding on the use of one calving season or two calving seasons is a big first decision when commercial producers are choosing calving seasons.  Research has shown that buyers are willing to pay premiums for larger lot sizes of uniform calves. Consequently, two calving seasons may be more advantageous for herds of 80 cows or more.  To take full advantage of the economies of scale, a ranch needs to produce at least 20 steer calves in the same season to realize the price advantage associated with increased lot size.  Therefore, having forty cows in each season as a minimum seems to make some sense.

Using two seasons instead of just one can reduce bull costs a great deal.  Properly developed and cared-for bulls can be used in both the fall and the spring, therefore reducing the bull battery by about half.   If bulls are used twice per year, they must be given adequate nutrition to maintain body condition and should be required to pass a breeding soundness exam at least yearly.

Another small advantage to having two calving seasons is the capability of taking fall-born heifers and holding them another few months to go into the spring season and vice versa.  Because of this, replacement heifers are always 2 1/2 years at first calving instead of 2 years old.  These heifers should be more likely to breed early in the breeding season and have slightly less calving difficulty.  Research (Goodrich, et al., 1985 OSU Research Report) has shown that these differences are very small, therefore the cost of the other six months feed must be minimal to make this a paying proposition.  A disadvantage to breeding heifers to calve at 30 months is found when “open” heifers are culled.  They are too old to go the feedlot and produce high grading carcasses.  Therefore, the older heifers will be discounted (price per pound) when marketed after an unsuccessful attempt to get them bred.

Some producers like the dual calving seasons because of the spread of the marketing risk.  Having half of the calf crop sold at two different times allows for some smoothing of the cattle market roller coaster ride.  It is important that an adequate number of calves be born together to a make a marketable package that will not be discounted because of small lot size.

Labor requirements and increased pastures must also be considered.  More days of the calendar year are involved with checking cows and heifers during the calving season if split seasons are utilized.  Fall-calving often conflicts with wheat planting during September or October.  More pastures are required to keep cows in the same stage of production together when there are two calving seasons.  Non-lactating cows need less energy and protein than do lactating cows to maintain body condition.  Feeding both together would be very inefficient.

There are advantages and disadvantages to a split calving season.  Having a split calving season is NOT for everybody but may be an alternative for some Southern Plains producers. 

Follow me on Facebook @ https://www.facebook.com/leland.mcdaniel

When is the Best Time (Age) to Castrate Bull Calves? . . .

Britt Hicks, OSU Extension Area Livestock Specialist, recently offered a good discussion of when to castrate bull calves and I wanted to share it.

Beef Quality Assurance Guidelines recommend that bull calves that are not herd sire prospects be castrated as early in life as possible (preferably, between birth and four months of age).  It has been speculated that delaying castration until weaning may improve performance since intact bull calves may grow more rapidly than steer calves.  However, several studies suggest that there is no lifetime performance advantage to waiting to castrate calves until weaning.  In fact, most research show that late castration (at weaning) decreases feedlot arrival gains and increases morbidity (sickness).

In 2011, University of Florida research investigated whether timing of castration in nursing calves affected calf performance and weaning weight.  In this study, 93 Angus and Brangus calves were either surgically castrated early (average age of 36 days) or late (average age of 131 days).  The age of the early castrated calves ranged from 3 to 73 days and the age of the late castrated calves ranged from 84 to 180 days.  At the time of castration, the average body weight of the late castrated calves was 356 lb.  Actual weaning weight (456 vs. 452 lb), adjusted 205-day weaning weight (512 vs. 504 lb), and average daily gain from birth to weaning (2.00 vs. 1.92 lb) were all similar between early and late castrate treatments, respectively.  These researchers concluded that this data indicates that producers have some degree of flexibility in determining when to implement castration.  The data showed that castration at or near birth did not have a detrimental effect on calf performance or weaning weight.  These authors also suggested that producers should realize that delaying castration until calves are approximately 131 days old will not bring added weight at weaning despite some producer philosophies and marketing claims that endorse such management practices.

In 2015, joint research between the University of Arkansas and West Texas A&M University (WTAMU) evaluated the effect of castration timing (near birth or at weaning) on lifetime growth performance and carcass quality of beef calves.  In this study, calves were surgically castrated near birth or at weaning.  All calves were weaned at day 214 of the study to undergo a 56-day weaning period.  For the first 28 days after weaning, the calves were fed hay ad libitum and a supplemental ration intended to achieve approximately 1.5 lb of gain per day.  After 28 days, the calves were moved to a mixed-grass pasture to be maintained for an additional 28-day period to complete the 56-day weaning phase of the study.  After this weaning phase, the calves were shipped 480 miles to the WTAMU Nance Ranch and grazed on native grass and sorghum-Sudan grass for a 111-day backgrounding period until entry into the adjacent WTAMU Research Feedlot.  The calves were fed a common feedlot ration throughout the finishing period (average length of 128 days) and harvested at a commercial processing plant.

These researchers reported that average daily gain from birth to weaning (214 days) was similar between treatments (1.81 vs. 1.85 lb/day for steers and bull calves, respectively).  Furthermore, there was no difference in weaning weight between the bulls left intact (483 lb) or the non-implanted steers castrated near birth (475 lb).  These authors suggest that this observation indicates that testosterone-enhanced growth in bulls vs. steer cohorts is not realized until bulls reach ages beyond the typical weaning age.  However, during the 56 day weaning period, calves castrated near birth gained faster than calves castrate at weaning (2.25 vs. 2.04 lb/day, P = 0.04).  Summer grazing and feedlot finishing performance and carcass measurements did not differ between treatments.  Theses researchers concluded that the results of this study indicate that castration procedures should be performed as early in life as possible to minimize performance loss.

Research from Nebraska (2005) has shown that as age of castration increases, weight loss resulting from the procedure increases (Figure 1).  In addition, reviews of marketing data show that bull calves marketed through conventional channels have historically suffered a price discount of ~5% compared to steer calves (~$5.00 to $7.00/cwt discounts) since surgical castration of calves after arrival at a feedlot decreases daily gains and increases morbidity.

Research conducted at the University of California, Davis (2017) assessed the effect of age on healing and pain sensitivity after surgical castration of beef calves.  In this study, beef calves were surgically castrated at 3 days of age (range of 0 to 8 days) or 73 days of age (range of 69 to 80 days).  The results of this study showed that calves castrated soon after birth experienced more tissue swelling and showed more signs of pain, but their incisions healed sooner (39 vs. 61 days) and their weight gain 77 days after castration was greater (1.54 vs. 0.66 lb/day), when compared to animals castrated around 73 days of age.

Collectively, these studies suggest that there is no lifetime performance advantage to waiting to castrate calves until weaning, but there is a high probability of receiving lower prices when marketing intact calves through conventional channels. When considering how age at castration affects animal welfare, the consensus is that the younger the calf is at time of castration, the less impact castration has on its welfare and performance.

Find out what’s happening on the Oklahoma Cooperative Extension Calendar at https://calendar.okstate.edu/oces/#/?i=2

Follow me on Facebook @ https://www.facebook.com/leland.mcdaniel

Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, and Title IX of the Education Amendments of 1972 (Higher Education Act), the Americans with Disabilities Act of 1990, and other federal and state laws and regulations, does not discriminate on the basis of race, color, national origin, genetic information, sex, age, sexual orientation, gender identity, religion, disability, or status as a veteran, in any of its policies, practices or procedures. This provision includes, but is not limited to admissions, employment, financial aid, and educational services. The Director of Equal Opportunity, 408 Whitehurst, OSU, Stillwater, OK 74078-1035; Phone 405-744-5371; email: eeo@okstate.edu has been designated to handle inquiries regarding non-discrimination policies.  Any person who believes that discriminatory practices have been engaged in based on gender may discuss his or her concerns and file informal or formal complaints of possible violations of Title IX with OSU’s Title IX Coordinator 405-744-9154.

How Does Rain Impact Hay Quality?

0

Summer afternoon rain showers are both a friend and foe for hay producers. While most farmers certainly won’t turn down a year with ample rain, the frequency of rainfall can pose a challenge to putting up high-quality hay for the winter months.

Rain can cause the following to occur when hay is being cured in the field prior to baling:

Leaching – Hay that is closer to baling, or more dry, is more susceptible to leaching losses than fresh cut forage. Nutrient leaching causes dry matter loss, increased fiber and decreased energy value of forage.

Respiration – Losses to respiration occur when moisture levels exceed 30%. When forage is re-wetted by rain, this keeps the forage moisture level high enough for respiration to continue or be prolonged, which results in carbohydrate losses in hay.

Leaf loss is generally more significant in legume forages than grass hay, and amount of loss is often quite variable. Additional handling of windrows to encourage drying post-rainfall contributes to leaf loss.

Rain damage increases with the amount, duration of a rainfall event, and timing relative to when hay was harvested. If rain occurs shortly after cutting, this is usually less damaging than hay that has already had significant drying time in the field. A research trial at the University of Arkansas reported that a short delay in harvest of perennial warm-season grasses had a more negative influence on hay quality than a single rainfall event ranging from 0.5 to 3 inches. Repeat instances of rain cause more damage than a single rainfall event. This is generally where more significant quality and dry matter losses occur, especially for hay that is still above 30% moisture that continues to respire.

Even if hay has been rained on multiple times, it is important to get the forage out of the field to minimize the impact of excessive thatch on forage regrowth for the next potential hay harvest. Higher moisture bales may undergo heating, and they also provide a favorable environment for mold growth. Collect a forage sample from rain-damaged hay to send in for nutrient analysis to determine overall feed value and suitability. Rain-damaged, low-quality hay should be used for cows in the herd with the lowest nutrient requirement.

It is a good idea to check for nitrate levels on forage that has gone through drought conditions followed by a recovery of a rainfall event.

Contact your County OSU Extension Educator for further assistance in obtaining proper forage samples.

Find out what’s happening on the Oklahoma Cooperative Extension Calendar at https://calendar.okstate.edu/oces/#/?i=2

Follow me on Facebook @ https://www.facebook.com/leland.mcdaniel

Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, and Title IX of the Education Amendments of 1972 (Higher Education Act), the Americans with Disabilities Act of 1990, and other federal and state laws and regulations, does not discriminate on the basis of race, color, national origin, genetic information, sex, age, sexual orientation, gender identity, religion, disability, or status as a veteran, in any of its policies, practices or procedures. This provision includes, but is not limited to admissions, employment, financial aid, and educational services. The Director of Equal Opportunity, 408 Whitehurst, OSU, Stillwater, OK 74078-1035; Phone 405-744-5371; email: eeo@okstate.edu has been designated to handle inquiries regarding non-discrimination policies.  Any person who believes that discriminatory practices have been engaged in based on gender may discuss his or her concerns and file informal or formal complaints of possible violations of Title IX with OSU’s Title IX Coordinator 405-744-9154.

Register Now for May 30-31 Ranch Tour! . . .

Beef cattle producers in Oklahoma will have the opportunity to learn first-hand more about their industry by attending the 2018 Master Cattleman Ranch Tour on May 30 and 31. Any cattle producer may register and learn from some of the state’s master cattlemen and cattlewomen. The cost of the tour is only $30 and is presented by OSU Animal Science Department and the Carter/Jefferson County OSU Extension Offices.. 

This is a unique opportunity to see some very progressive, scenic, and historic beef cattle ranches of south-central Oklahoma.You will appreciate the environmental and ecological diversity that will be on display from ranch-to-ranch. Although the focus is on beef cattle production, including cow/calf, stocker, purebred seedstock, and backgrounding operations, it will also be an opportunity to see, up close and personal, some of the issues in this region of the state regarding invasive species (Eastern red cedar), groundwater/surface water resources (Arbuckle-Simpson Aquifer), and some very challenging landscape to implement control measures.

The ranches range in size from about 10,000 to 35,000 acres. There will be some interesting contrasts of vertical and horizontal integration, genetic selection, stocker health management, fall vs. spring calving seasons, winter feeding strategies, native range management, and the use of Rx fire to enhance animal performance, as well as controlling brush.

Please find the linked flier on the upcoming Master Cattleman Ranch Tour, presented by the OSU Animal Science Department and the Carter/Jefferson County OSU Extension Offices. For details about the seven ranches to be visited and key topics discussed, click on the link below to a flier that gives more important information about the tour:  http://beefextension.com/temp_files/2018MasterCattlemanRanchTour.pdf. In addition, there is an online registration link, that it will be limited to the first 100 registrants. Registration Link: http://www.ansi.okstate.edu/marketplace. Register now, don’t delay.

Not All Protein Ingredients are Created Equal

Crude protein is simply the percentage of nitrogen multiplied by 6.25. For beef cows, this simple measurement is adequate for formulating nutrient requirements. However, for growing animals it is important to understand that not all proteins are alike or preform the same. Crude protein in a ruminant animal can be broken down in the rumen (digestible protein), passed through the rumen to the other stomachs or to the hindgut for digestion (bypass protein), or is passed through the feces (undigestible protein).

When feeding ruminants, you are actually feeding two animals. The first being the microorganisms in the rumen and then feeding the animal. The microbes in the rumen require the protein to work efficiently at breaking down and digesting feedstuffs. The protein sources that feed the animal are the bypass protein, the volatile fatty acids and ammonia from microbe digestion, and the dead microbes themselves can be used as a protein in the hindgut.

Each feed ingredient has a certain amount of bypass protein that it contributes to the animal. Ingredients such as soybean meal, alfalfa hay, sunflower meal, feather meal, canola meal, peanut meal, and corn gluten feed contain only ten to thirty percent bypass protein. These feeds are commonly used when degradable protein is needed or when cost effective. A perfect time when one of these supplements is needed is in a situation with really low-quality forage (less than 4-5% crude protein), such as mature and dormant forage. The extra degradable protein these supplements provide will meet the protein requirements of the microbes.

Cottonseed meal and linseed meal are two very common ingredients used in ration formulation, and they contain between thirty to sixty percent bypass protein. We commonly compare soybean meal with cottonseed meal because of their availability and high levels of crude protein, but the degradable fractions of that protein are drastically different.

The feed ingredients with high levels of bypass protein are blood meal, fish meal, brewers grains, and distillers grains. The amount of bypass protein available is these supplements is the reason that they have become popular with producers growing stocker or feeder calves. They supply adequate amounts of protein to the rumen but also supply ample amounts of bypass protein to the animal for growth.

Ingredients such as urea and biuret are almost 100% degradable protein and provide no bypass protein to the animal. These ingredients do not supply any protein in the form of amino acids or peptides but only supply nitrogen to the microbes. Typically, animals consuming grain, silage, alfalfa, or lush pasture do not need to be supplement with rumen degradable protein.

So, when you are comparing supplements for your animals just remember that not all protein is the same. Find the protein source that best fits your situation at the most economical cost. If you have any questions about feeds and feeding, please contact your county’s OSU Extension office. (Source: Earl Ward, OSU Extension Area Livestock Specialist)

Reference: New Protein Values for Ingredients Used in Growing Cattle Rations. Fact Sheet G84-694. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1292&context=extensionhist

Find out what’s happening on the Oklahoma Cooperative Extension Calendar at https://calendar.okstate.edu/oces/#/?i=2 

Follow me on Facebook @ https://www.facebook.com/leland.mcdaniel

Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, and Title IX of the Education Amendments of 1972 (Higher Education Act), the Americans with Disabilities Act of 1990, and other federal and state laws and regulations, does not discriminate on the basis of race, color, national origin, genetic information, sex, age, sexual orientation, gender identity, religion, disability, or status as a veteran, in any of its policies, practices or procedures. This provision includes, but is not limited to admissions, employment, financial aid, and educational services. The Director of Equal Opportunity, 408 Whitehurst, OSU, Stillwater, OK 74078-1035; Phone 405-744-5371; email: eeo@okstate.edu has been designated to handle inquiries regarding non-discrimination policies.  Any person who believes that discriminatory practices have been engaged in based on gender may discuss his or her concerns and file informal or formal complaints of possible violations of Title IX with OSU’s Title IX Coordinator 405-744-9154.

The Farm and Ranch Report

Livestock Risk Protection Insurance

Listening to Derrell Peel, OSU Extension Livestock Marketing Specialist, speak this past week, one might conclude that profit margins may be a little tighter in the coming year or two. According to Derrell, we may have reached a plateau on the national cow herd expansion and, subsequently, the potential for higher prices. If so, and IF is a big word, it would seem that management and marketing skills will become much more prominent in determining the profitability of the cattle enterprise; or, in a worst-case scenario, minimizing the down-side risks of market prices.

 With those thoughts in mind, I found the following comments, courtesy of OSU Extension Area Ag Economist Trent Milack, of particular interest.

Livestock Risk Protection is an insurance product that protects against declines in cattle prices. In the past, the main focus when raising cattle has been on the production side. Arguably, this is still true. However, price is at the forefront of many producer’s minds due to recent cattle market volatility.

Livestock Risk Protection can be purchased through a livestock insurance agent. This product insures between 1 and 1,000 head at a time with a total of 2,000 insurable head per year. The length of the insurance coverage varies from 13, 17, 21, 26, 30, 34, 39, 43, 47, or 52 weeks. Insurance can be purchased on calves, steers or heifers, which fall in the weight classes of Weight 1 (under 600 pounds) or Weight 2 (600-900 pounds).

Coverage levels vary between 70 percent and 100 percent of the expected ending value of the animals. The coverage options available vary each day so it is important for producers to check the RMA website https://public.rma.usda.gov/livestockreports/main.aspx daily to determine which coverage options are available. The ending values of the policy are based upon the weighted average prices reported in the CME Group Feeder Cattle Index. This index is used to settle the Feeder cattle contracts.

An indemnity payment is triggered if the actual ending value is lower than the coverage price. This has nothing to do with what the producer receives for the animals in the cash market when he sells the cattle. Indemnity payments will only occur if the price declines below the coverage level during the coverage period. Also, the producer must own the cattle and have taken delivery of them in order to qualify for the insurance coverage.

An example of the insurance coverage includes a producer who wants to use LRP to put a floor on his 2019 steer crop. He normally sells in the middle of March and his steers currently weigh 500 pounds. His herd consists of 100 predominately Angus cross steers.

The insurance is purchased in October so he needs 26 weeks of coverage. The option he selects includes feeder cattle steers for the 2019 crop year with an expected ending value of $136.794 per cwt. He chooses a 99% coverage level with a coverage price of $135.040 per cwt. The premium will be $6.889 per cwt. He expects the steers to gain 250 pounds over the course of this coverage. The premium is calculated by multiplying the final weight in cwt. by the premium cost per cwt. and the number of head covered. So 7.5 cwt. X $6.889 X 100 hd. = $5,166.75. RMA subsidizes 13 percent of the premium cost so the producer will be responsible to pay $5,166.75 X .87 = $4,495.07.

In the event that on March 31st the actual value is below the coverage price of $135.040 per cwt., an indemnity payment will be triggered. If prices fall to $120.00 cwt., the producer would be paid a premium in the following example. The price decline in this example is $135.040 – $120.00 = $15.04. The producer’s payment is 100 hd. X 7.5 cwt. X $15.04 = $11,280.00. This farmer received an indemnity payment of $11,280.00 on 100 steers for the cost of $44.95 per head. While there is no way to know what the actual ending price will be, this is an option to manage downside price risk.

Perils not covered include death, government seizure, and forced destruction. If one of these events do occur, the producer is required to notify their insurance agent within 72 hours of the occurrence of the loss. By giving notice of the loss, the producer will have the affected livestock included if an indemnity is payable on the endorsement. Not giving notice of the loss will result in the affected livestock being excluded from the indemnity calculation and the premium will not be refunded.

Some producers are aware of hedging and the ways that they can manage price risk in the futures markets. There are many reasons, however, why producers do not utilize this option. They may not have enough cattle to fill an entire contract, they may be reluctant to pay brokerage fees and margin calls, or they just do not understand the complicated world of futures markets and are uncomfortable with that risk management system. Livestock Risk Protection allows a producer to tailor the insurance coverage to the number of cattle he needs to insure at a price where he will remain profitable.

The application for Livestock Risk Protection can be filled out at any time, but insurance does not come attached until a specific endorsement is made. The insurance coverage will begin when a specific endorsement is made and approved by RMA.

Follow me on Facebook @ https://www.facebook.com/leland.mcdaniel

Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, and Title IX of the Education Amendments of 1972 (Higher Education Act), the Americans with Disabilities Act of 1990, and other federal and state laws and regulations, does not discriminate on the basis of race, color, national origin, genetic information, sex, age, sexual orientation, gender identity, religion, disability, or status as a veteran, in any of its policies, practices or procedures. This provision includes, but is not limited to admissions, employment, financial aid, and educational services. The Director of Equal Opportunity, 408 Whitehurst, OSU, Stillwater, OK 74078-1035; Phone 405-744-5371; email: eeo@okstate.edu has been designated to handle inquiries regarding non-discrimination policies.  Any person who believes that discriminatory practices have been engaged in based on gender may discuss his or her concerns and file informal or formal complaints of possible violations of Title IX with OSU’s Title IX Coordinator 405-744-9154.

Lactating Cows Need More Protein and Energy . . .

As the spring calving season gets underway, we often feel a sense of relief when we get live calves on the ground and our attention then turns to the remaining cows that are yet to calve. However, we shouldn’t lose focus of the nursing cows and their increased dietary needs. Now, it requires protein and energy not only to maintain flesh and core body functions during inclement weather, but also to fuel milk production, and Mother Nature dictates that if a cow’s protein and energy requirements are not adequate to satisfy all these biological demands, she will sacrifice her body mass to provide for the newborn nursing calf. Dr. Glen Selk, Oklahoma State University Emeritus Extension Animal Scientist, offers a concise overview of the nursing cow’s increased protein and energy needs.

Beef cow owners have known for years that body condition at calving time is a critical determinant in the re-breeding performance of the cows during the next breeding season. Another key factor that impacts return to estrus cycles and re-breeding is the maintenance or loss of body condition after calving and before breeding. Cows losing body condition after calving and before the breeding season will be slower to return to heat cycles and rebreed at a lower rate. Therefore it is necessary that the cow manager understand the change in nutrient requirements of beef cows as they change from gestating cows to early lactation cows.

Using an example of a 1200 pound cow in late gestation, one can examine the nutrient increases as she delivers the calf and starts to lactate. Look in the Oklahoma State University Extension Circular E-974 Nutrient Requirements for Beef Cattle. A 1200 pound late gestation cow requires 1.9 pounds of crude protein daily and 12.9 pounds of Total Digestible Nutrients (TDN). She can consume voluntarily 24 pounds of dry matter feed/day. The same cow after calving will weigh at least 100 pounds less (birth weight of calf, placenta, and fluid loss). An 1100 pound cow in early lactation requires 2.9 pounds of protein each day. That is a 52% increase in protein needs. Her energy requirements go up substantially as well.  She needs 16.8 pounds of TDN each day (if she is an average milking beef cow). This represents a 30% increase in energy intake per day.  Her daily dry matter intake also increases from 24 to 29 pounds but this represents only a 20% increase. If the 30% crude protein supplement being consumed is increased by 3.3 pounds, the protein requirement is met and most of the additional energy needs are fulfilled. Her voluntary increase of 2 pounds of hay per day should make up the remaining gap.

As we examine this example it is very clear that the cow will voluntarily consume a small increase in dry matter, however her needs in protein and energy both increase in larger percentages. Therefore an increase in both diet quality and quantity is necessary after calving to insure that body condition is maintained into and through the breeding season.

As a follow-up to Dr. Selk’s comments, I would remind you that cows can suffer some dietary deficiencies and still provide for the calf, but it will be at the expense of her own body condition and, as Dr. Selk points out, that has repercussions for recycling and rebreeding. In other words, the current body condition on nursing cows will have an impact on next year’s calf crop, and remember that reproductive efficiency is the most significant economic measure of a cow/calf operation.

Follow me on Facebook @ https://www.facebook.com/leland.mcdaniel

Oklahoma State University, U.S. Department of Agriculture, State and Local Governments Cooperating. The Oklahoma Cooperative Extension Service offers its programs to all eligible persons regardless of age, race, color, religion, sex, sexual orientation, genetic information, gender identity, national origin, disability or status as a veteran, and is an equal opportunity employer.

FOLLOW US

2,900FansLike
630FollowersFollow
264FollowersFollow
66SubscribersSubscribe
- Advertisement -

RECENT POSTS